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Abstract

There are two fundamental limitations in software testing, known as the reliable test set problem and
the oracle problem. Fault-based testing is an attempt by Morell to alleviate the reliable test set problem.
In this paper, we propose to enhance fault-based testing to alleviate the oracle problem as well. We
present an integrated method that combines metamorphic testing with fault-based testing using real and
symbolic inputs.
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1 Introduction

Program correctness has long been one of the most fundamental issues of computer science. Although
program proving provides a formal means of verifying the correctness of programs, it suffers from the
complexity and automation of the proofs. It is not easy even to prove the correctness of a relatively simple
program. On the other hand, software testing is the most popular method used by practitioners to improve
their confidence in the software product. There are, however, two recognized limitations in software testing,
known as the reliable test set problem and the oracle problem. The concept of a reliable test set was
originally proposed by Howden [20]: Suppose p is a program computing function f on domain D. A
test set T C D is reliable for p if (Vt € T, p(t) = f(t)) = (Vt € D, p(t) = f(t)). In other words, the
success of a reliable test set implies the program correctness. Howden points out, however, that an effective
algorithm which generates a reliable test set for any given program cannot be constructed, unless the set
covers the whole input domain. We refer to this limitation as the reliable test set problem or the reliability
problem. Another deficiency in software testing is that, in some situations, testers are unable to decide
whether p(t) = f(t), that is, whether the result of the program under testing agrees with the expected result.
This second limitation is known as the oracle problem [17, 29].

Since reliable test sets of finite sizes are not attainable in general, and test sets employed in practice must
be of finite sizes, testers need practical means of evaluating such test sets with a view to selecting those with
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better performances. The mutation adequacy (or relative adequacy) criteria were introduced [5, 15, 16] to
provide a realistic approach for determining whether a test set is relatively sufficient. It restricts the faulty
programs to a smaller set, possibly finite in size. Such faulty programs can be differentiated from the original
program by a test set that is also finite. Thus, suppose p is a program computing function f on domain D,
and Q is a finite set of programs generated by slightly modifying the original program p. Each program
g € Q such that g # p is called a mutant of p. Atest set T C D is said to be adequate for p relative to Q
if, V programs g€ Q, (3t € D : q(t) # f(t)) = (3t € T : q(t) # f(t)). The purpose of mutation testing
is to generate a relative adequate test set T to differentiate all the mutants g € Q from the original program
p. Mutation testing has been shown to be very powerful in revealing program faults both experimentally
and analytically [16, 26, 27, 28]. This is because, as research into the “fault coupling effect” [18, 19, 25]
demonstrated, “Complex faults are coupled to simple faults in such a way that a test data set that detects all
simple faults in a program will detect a high percentage of the complex faults” [25].

In mutation testing, it is assumed that any set of mutants consists only of a finite number of programs, so
that they can be killed by a finite test set. This constraint has been resolved by Morell using the concept of
fault-based testing [22]. He refers to mutants as alternate programs, and a set of mutants as an alternative
set, which may contain an infinite number of programs. Hence, fault-based testing “prove[s] the absence
of infinitely many faults based on finitely many executions” [22]. To achieve this goal, the technique of
symbolic execution [11, 12, 21] was used, and statements proclaiming the absence of certain types of faults
were created and proved during the testing process. In this way, Morell combined program testing and
proving in a unified methodology.

Given any input to a program, an oracle is a mechanism that specifies the expected outcome. We note
that, in the above methodologies for alleviating the reliable test set problem, there is always an underlying
assumption that a testing oracle exists. Testers check the execution results against the oracles to decide
whether the program generates correct results on test cases. In some practical situations, however, an oracle
is not attainable. This is known as the oracle problem. In numerical analysis, for example, it is often difficult
to verify the results of calculations [17]. Weyuker [29] defined a program to be non-testable if “(1) there
does not exist an oracle” or “(2) it is theoretically possible, but practically too difficult to determine the
correct output.” Moreover, in the theory of fault-based testing introduced by Morell, not only is the oracle
for real output required, but the oracle for symbolic output is also demanded because it involves symbolic
execution and symbolic output. Without an oracle, the above techniques will not work. In this paper, we
propose an integrated approach that combines fault-based testing with metamorphic testing to alleviate the
oracle problem. Our method is built on the techniques of symbolic execution [11, 12, 14, 21, 24].

In Section 2, we shall introduce the concepts in fault-based testing, and highlight the need of a testing
oracle. In Section 3, we shall review testing techniques proposed by various researchers that can be carried
out in the absence of an oracle. In particular, we shall introduce the metamorphic testing technique. In
Section 4, we shall present our approach that integrates fault-based testing with metamorphic testing in
order to alleviate the oracle problem in the former technique. We shall demonstrate through examples how
real and symbolic inputs can be used to rule out prescribed faults in programs even if testing oracles are
not available. In Section 5, we shall discuss how the method can be applied further. The final section will
conclude the paper.



1: INPUT (X, y);
2: X=X*y+3;
3: OUTPUT (x * 2);

Figure 1: Program p for f(x, y) =2xy+6

1. INPUT(x,y);
2" x=x*y+F,
3: OUTPUT (x * 2);

Figure 2: Program p’

2 Fault-Based Testing

There have been a lot of discussions on the purposes of software testing. Most people agree that testing
cannot prove the correctness of a program [2]. Some people regard testing as an activity to look for bugs in
a program, and therefore consider successful test cases, which fail to reveal errors, to be useless and a waste
of time [23]. Others argue that successful test cases are useful and informative [6, 22]. Fault-based testing
adopts the latter perspective and treats successful executions of a program as indications of the absence of
some types of faults [22]. Fault-based testing therefore receives from a successful execution the information
on the absence of certain types of faults. In some sense, mutation testing can be regarded as a special case of
fault-based testing. A major difference is that the set of mutants eliminated by the former is finite whereas,
by making use of symbolic executions, the set of alternate programs eliminated by fault-based testing can
be infinite.

2.1 Fault-based testing with real input

Figure 1 shows a 3-line program p adapted from the first example in [22], which illustrates the technique
of using one single symbolic alternative to represent infinitely many alternatives. The program is supposed
to calculate a mathematical function f(x, y) = 2xy+ 6. To ensure that there is no error with respect to the
constant “3” in line 2, we assume that it is replaced by another constant “F”, as shown in line 2’ of program
p’ in Figure 2. “F” denotes all possible alternatives for the constant “3”, and hence program p’ represents
infinitely many alternate programs for p.

Letx=>5and y= 6 be a test case. The original program p will generate an output of 66, which can easily
be verified to be correct against an oracle. By means of symbolic execution of program p’, we obtain an
output of (304 F) 2. Morell’s goal is to find all the constants F such that program p’ will produce the same
result as the original program p. In other words, we must find all the values of F such that (30+ F) 2 = 66.
Solving the equation, we obtain F = 3. Hence, we have proved that the test case (5, 6) distinguishes the
original program p from all mutants constructed by replacing 3 in line 2 by any other constant values. Note
that, to do the testing, an oracle is required for checking the correctness of the output of the original program.



double ComputeArea () {
double a, b, incr, area, v;
INPUT (a, b, incr); /* incr > 0 */
v=a*a+l;
area =0;
while (a + incr <=b) {
area = area + v *incr;
a=a-+incr;
v=a*a+l;

NoakwnhE

}
8: incr=b-—a;
9: if(incr >=0){

10: area = area + v * incr;

11: return area;
}
else

12: ERROR (“illegal values for a and b!™);
}

Figure 3: Program ComputeArea

2.2 Fault-based testing with symbolic input

The previous example illustrated the procedure of using a real input to eliminate a constant alternative in
fault-based testing. Morell also demonstrated how to eliminate more complex alternatives such as variable
substitution using symbolic inputs rather than real inputs. Figure 3 shows a sample program adapted
from [22]. It calculates the area under the curve x?+ 1 over the interval between a and b. Suppose the
aim of the testing is to show the absence of errors in the assignment statement 3. Let the symbolic input
be a= A b=B, and incr =1 such that B> A and A+1 > B. Then the symbolic output produced by
symbolic execution will be (AxA+1) x (B— A). Note that, according to Morell’s method, a symbolic oracle
is required here to verify the correctness of the output.
Suppose we introduce a fault in the assignment statement 3:

3': area=F; /*Should be “area =0;" */

where F is a constant. Following the same execution path, we obtain an output of F + (Ax A+ 1)« (B—A).
Morell’s goal is to find all the constants F such that statement 3’ will produce the same result as the original
statement 3. Hence, we have F 4 (A% + 1) x (B— A) = (A?+ 1) x (B— A), which can be solved to give F = 0.
Thus, statement 3’ can only be exactly the same as statement 3.
Morell also proved that alternate programs would also be eliminated when F denoted a polynomial of a.
In other words, if F(a) denotes the set of all polynomials in &, then it can be proved that F(a) can only be 0.
Furthermore, Morell introduced another error in statement 5. It is replaced by

5': area=F; /* Should be “area = area + v * incr;” */
where F denotes a constant alternative. Let the symbolic inputbe a=A, b=B, and incr =1 such that A+1 <

Band A+ 2l > B. Using a similar procedure, it can be shown that F = (Ax A+ 1) 1, thus contradicting the
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assumption that F is a constant. This proves that no constant substitution can be found for statement 5. By
executing the loop twice, Morell further eliminated all alternate programs in which F could be a polynomial
of the variables area, v, and incr. In other words, when the assignment fault introduced in statement 5 is a
polynomial in the form F(area, v, incr), it can be proved [22] that F (X, y, z) = x+ yz which is exactly the
function computed in the original program.

Note again that these techniques have been based on the assumption that both the real and symbolic
outputs can be verified against some oracles.

In Section 4, we shall present an approach to do fault-based testing without the need of oracles for real
and symbolic outputs. Before doing this, let us review the oracle problem in more details.

3 Testing Without Oracles

In order to test a numerical program where an oracle is not available, a common approach is to make
use of identity relations derived from theory. This technique was, for example, intensively used in Cody
and Waite [13]. For instance, the identity cos(—x) = cos(x) was used to test the program that supposedly
compute the cosine function.

Weyuker [29] undertook a detailed study and introduced various approaches to test “non-testable pro-
grams” via static and dynamic properties of the functions being calculated. She gave an example of the
testing of two programs that are supposed to compute the functions f(x) and f’(x), respectively, where f'
is the derivative of f. From elementary results in Taylor series, we know that f(x+A) = f(x)+Ax f'(x) +
O(A?). Substituting A= 1, 0.1, 0.01, ... into the expression f(x+A) — (f(x) +A x f(x)), we can “see at
a glance whether f’ could be the derivative of f.”

There is a closely related technique known as data diversity. It has been developed and advocated for
fault tolerance, rather than fault detection, by Ammann and Knight [1]. Given an original input, the objective
of data diversity is to provide alternate means of computing the same input using the same program. Such
alternate inputs are basically “reexpressed” forms of the original input. Consequently, properties used in
data diversity must also be identity relations.

Blum and Kannan [3] introduced the concept of a program checker, which is a program that prob-
abilistically checks the correctness of the output of another program. An example is a checker for the
graph isomorphism function, which employs the property that if G and H are not isomorphic, then G and
permutations of H should not be isomorphic either. Blum et al. [4] extended the theory of the program
checker into the theory of self-testing / correcting. Given a function f and a program p that implements f, a
self-tester T for f is a probabilistic program. T estimates the error probability that p(x) # f(x) for a random
input x. A self-corrector C for f is also a probabilistic program. If it is known that program p calculates f
correctly for sufficiently large amount of data on the input domain, then for any input x, C will make calls to
p and return the value of f(x) correctly with a high probability. Blum et al. introduced general techniques to
construct self-tester / corrector for a variety of numerical functions. For example, the self-tester / corrector
for integer multiplication functions essentially employs the distributive law ax (b+c) =axb+axc.
The self-tester / corrector for modular functions essentially employs the property that (a+ b) mod r =
(amod r+bmod r) mod r.

More recently, a metamorphic testing (M T) method was proposed by Chen et al. [8]. It can be explained
briefly as follows. Let f be a function to be programmed. Suppose R: is some property of f that can
be expressed as a relation among a series of the function’s inputs X1, Xo, ..., X,, where n > 1, and their



corresponding values f(x1), f(x2), ..., f(xy). This relation Ry is called a metamorphic relation. Consider
the sine function, for instance. For any two inputs X1 and x, such that x; + %o = 1T, we must have sin X; =
sin Xo. This property is a metamorphic relation of the sine function and can be written formally as

Ren = { (X1, X2, Sin Xa, Sin %) | Xa+X =T — sin X, =sin Xz}.
When there is no ambiguity, we can simply write the relation as
Rsn: X1 +Xo =T — sin X3 = Sin Xo.

Suppose p is a program that implements the function f. Let p(x1), p(X2), .., P(Xn) be the outputs
of p corresponding to the inputs xg, Xo, ..., X, respectively. In theory, p should satisfy all the properties
of f, including metamorphic relations R¢. In practice, however, the relations R; need to be converted
into other metamorphic relations R, more suitable for the implementation domain, by taking into account
such implementation issues as rounding errors in floating-point arithmetic. MT proposes to check whether
a program under test satisfies such metamorphic relations R,. They are necessary (but not sufficient)
conditions for the correctness of the program under test.

For example, suppose p implements the sine function. In theory, it should satisfy

Rp= {(X1, X2, P(X1), P(X2)) \ X1+X =T = p(X1) = p(Xz)}-

In practice, when floating point arithmetic is involved, the inputs and outputs should satisfy an implementation-
oriented metamorphic relation such as

() — plx)
min( 0], 1poa)D| < &

R’p = {(Xla X2, p(xl)a p(XZ)) ‘ X1+ X = Pl —

or
Ry = {(x1, X2, p(xa), P(%2)) | X1 +X2 =Pl — |p(x2) — p(x1)| < €},

where Pl is the implemented value of Ttand € is the acceptable error. For the ease of presentation, we shall
simply use the form Ry, in the examples in this paper. Readers are reminded that R’p or R/F’) may be used in
the actual cases.

To verify this relation, two executions are needed in MT. The first input to p is a real number X1, followed
by a second input X, = T1—x1. Even if a testing oracle does not exist, MT can still be applied because it checks
the relations among the inputs and outputs of more than one execution of the program, instead of checking
a single result.

There is a similarity between MT and the earlier methods introduced in this section, in that all of them
make use of some properties of the functions to check the program outputs. There are, however, differences
between MT and the other methods in both practice and philosophy. In practice, metamorphic testing not
only employs identity relations, but also makes use of inequalities. An example can be found in [9]. As for
the other approaches described above, apart from a couple of examples on error bounds given by Weyuker,
they all employ identity relations only. With regard to the philosophical aspect, consider the program checker
as an example. Its ultimate goal is to estimate, through a probabilistic oracle, how likely the program output
is correct for a given test case. Even though other test cases may be generated by the checker during the
testing process, the fundamental goal does not change. On the other hand, it is not the prime objective of



metamorphic testing to provide an alternate means of identifying a testing oracle to verify the correctness of
a single output. Its intrinsic philosophy is that, when a test case selected according to some testing criteria
does not reveal any failure, it still carries useful information, albeit implicitly. Thus, follow-up test cases can
be used to check certain necessary properties of the program, irrespective of whether a testing oracle exists
or not. If the necessary properties do not hold, the program is obviously incorrect. In this way, metamorphic
testing is property-based and can be used along with any other test case selection strategies.

4 Integrating Fault-Based Testing with the M etamor phic M ethod

As introduced in Section 3, MT is a method that checks whether the program satisfies expected metamorphic
relations. The latter is independent of the presence or otherwise of an oracle. MT can therefore be applied
without the need of an oracle. In this section, we shall integrate MT and fault-based testing to alleviate the
oracle problem, for both real and symbolic inputs.

4.1 Preliminary example

Similar to Morell’s fault-based testing, our integrated method also allows two types of inputs: real and
symbolic. We shall also use the mathematical function f(x, y) = 2xy+ 6 and the 3-line program in Figure 1
as a preliminary example to illustrate our technique. From simple algebra, we find that the function satisfies
the property f(xy, f(x, y)) — f(x, y) = (2xy)?+10xy. > This can be expressed formally as a metamorphic
relation as follows:

Ri = {((x1, y1), (%2, y2), f(xa, y1), (%, ¥2)) |
(e =Xy1 A Yo = f(x1, Y1) = f(Xe, ¥2) — f(X1, Y1) = (2X1y1)? + 10xay1 }.

Let p denote the program in Figure 1. The expected metamorphic relation for pis defined as

Ro = {((x1, Y1), (%2, ¥2), P(x, Y1), P(%2s ¥2)) |
(X2 =Xay1 A Yo = p(X1, Y1)) = P(X2, Y2) — P(X1, Y1) = (2Xay1)® + 10xqy1 }.

For the test case (xq, y1) = (5, 6), the program p produces “66” as output. Suppose, for the sake of
argument, that this program does not have a known oracle.? We continue to generate the next test case as
suggested by the metamorphic relation R,. Thus, we obtain x; = X1y1 =5 x 6 = 30, and y> = p(X1, Y1) =
66. For this test case, the program yields p(30, 66) = 3966. We need to verify whether the two test
results together satisfy the expected relation Ry. Indeed, p(x2, y2) — p(X1, Y1) = 3966 — 66 = 3900, and
(2x1y1)?+10x1y1 = (2 x 5 x 6)%+ 10 x 5 x 6 = 3900. Hence, the relation Ry, is fulfilled.

Suppose we introduce an assignment fault F into the program, as shown in Figure 2. This faulty
program, which we shall denote by p’, produces 2F + 60 by the symbolic execution of the same initial test
case (x1, y1) = (5, 6). Taking the metamorphic relation Ry, into consideration, we choose a second symbolic
test case (x, =5 x 6 =30) and (y, = p’(5, 6) = 2F + 60). After symbolic execution, p’ yields the output
(30 x (2F +60) + F) x 2 = 122F +3600. Our goal is to find the value(s) of F for which p’ satisfies the

IMany properties of f can be identified as metamorphic relations. This is but one example.

2\We use this simple but artificial example to illustrate the procedure behind metamorphic testing. Genuine examples where no
oracle exists will be given in Sections 4.2 and 4.3.




® N

10:
12:
13:
14:
15:
16:

17:

double Power (double u, double v) {
double uMinusOne, numerator, InTerm, result;
inti;
if(v==0)
result = 1;
else {
if ((int)v ==v) && (v > 0)) {
result = 1;
for(i=1;i <=v;i++)
result = result * u;

}

else {

FinU)=In(l+U—1)=@U—1)—1/2*U—1)"2+1/3*(u—1)"3— ...

i=1;
uMinusOne =u — 1;
numerator = uMinusOne;
InTerm = uMinusOne;
result = uMinusOne;
while (fabs (InTerm) > 1e—16) {
[* “fabs” is a floating point function that returns the absolute value */
[*1e—16=10"{-16} */
i++:
numerator = (—1) * numerator * uMinusOne;
InTerm = numerator / i;
result = result + InTerm;
}
result = exp(v * result);
}
}

: return result;

*/

expected relation Rp. Thus, substituting into Ry, we establish p’(Xz, y2) — p’ (X1, Y1) = (2X1y1)? + 10x1y1,
giving (122F +3600) — (2F 4-60) = (2 x 5x 6)?+10 x 5 x 6. Solving the equation, we obtain F = 3, which
is the only value that F can take. This means that all the alternate programs constructed by replacing 3 with
other constants have been eliminated. This result coincides with that obtained by conventional fault-based
testing in [22]. A fundamental difference is that we have applied the MT technique without referring to a
testing oracle.

In the next two sections, we shall further describe how fault-based testing can be achieved in the absence

Figure 4: Program Power

of an oracle using real and symbolic inputs, respectively.




4.2 Fault-based testing with real input in the absence of an oracle

Consider the program Power in Figure 4. Given two real numbers u and v as input, the program computes
the value of u". This is done in three ways:

(i) If vis zero, then obviously u¥ = 1.

(i) Otherwise, if v is a positive integer, then u¥ can be found by multiplying u by itself the appropriate
number of times.

(iii) Otherwise, u¥ is computed by the mathematical expression e"'"(\).

The main task of our testing lies with part (iii).
Consider statement 11 in the program. Suppose we introduce a fault in the statement 11, of the form

11": result=F; /* Should be “result = uMinusOne;” */

Our goal here is to ensure that any constant alternative is impossible. Assume the contrary. We would like
to find all possible constants F such that the erroneous statement 11’ would pass the test without being
detected.

Since it is not straightforward to verify the result of this example against an oracle, especially for large
numbers, we shall make use of the metamorphic testing method. A typical property of the exponential
function is u¥ x u¥ = (ux u)V. Hence, the program should satisfy the metamorphic relation

Power (u, v) x Power (u, v) = Power (ux u, V).

Let u=0.5400128 and v = 3.9 be a test case. The original program will generate Power (0.5400128, 3.9) =
9.0443177318673 x 102, and Power (0.5400128 * 0.5400128, 3.9) = 8.1799683234969 x 10~3. Since
(Power (0.5400128, 3.9))2 = 8.1799683234969 x 10~3 = Power (0.5400128 % 0.5400128, 3.9), the meta-
morphic relation is satisfied.

Now consider the program with the symbol “F” in statement 11'. Let us call this program Power /. After
symbolic execution, we obtain the symbolic output

Power ' (0.5400128, 3.9) = e39x[F+52(~1)7(0.5400128-1)'/i],
Hence,
Power(0.5400128, 3.9) x Power /(0.5400128, 3.9) = e?*39x[F+525(~1)'"(0.5400128-1)' /]
On the other hand, for the test case (0.5400128 x 0.5400128, 3.9), the output of the symbolic execution is
Power’(0.5400128 * 0.5400128, 3.9) = e39[F +32(~1)'"*(0.5400128x 0.5400128-1)'/i]
Hence, according to the metamorphic relation, we should have

2% 39x[F+373,(—1)"%(0.5400128— 1)/ /i] _ @3 9x[F +3%,(—1)-1(0.5400128x 0.5400128—1)' /i] _

Solving the equation, we obtain F = —2.1158822416384 x 101,



/* Program Trig calculates the value of sin x if “isSin” is true.
Otherwise, it calculates the value of cos x. */
double Trig (double x, bool isSin) {
int index;
double term, sum;
[* Initialize for cos x */
1. term=1,;
2. index =1,
3. if (isSin) { /* Initialize for sin x */
4. term = x;
5 index = 2;
}
6: sum =term;
7 while (fabs (term) > 1e—16) {
8: term =term * (—1) * x * x / (index * (index + 1));
9 sum =sum + term;
10: index = index + 2;
}
11: returnsum;
}

Figure 5: Program Trig

Let u=0.7309782 and v = 9.16 be another test case. Through the same procedure, we can deduce that
F = —7.2372728875240 x 10~2. Even if rounding errors are taken into consideration, those two values
of the same constant F obviously contradict each other. As a result, no constant alternative is possible for
statement 11’. In other words, we have proved that the metamorphic test cases (u, v) = (0.5400128, 3.9),
(0.5400128 x 0.5400128, 3.9), (0.7309782, 9.16), and (0.7309782 x 0.7309782, 9.16) distinguish the
original program Power from every mutant constructed by replacing uMinusOne in statement 11 by any
constant value.

4.3 Fault-based testing with symbolic input in the absence of an oracle

Let us consider a further example as shown in Figure 5. The program Trig accepts as inputs a real number
x and a Boolean parameter isSin. It calculates sin x when isSin is true and cos x when isSn is false. Except
for special cases such as x =0 and x = 11/2, there is no easy way to verify the outputs of the program, unless
we check them against the outputs from yet another program.

Suppose statement 4 is replaced by an alternative:

4': term=F; /* Should be “term = x;” */

where F is a function of x in the form F = ax x" such that a is a real number constant and n is a non-negative
integral constant.

As explained earlier, it is not easy to verify the program against an oracle, so that we cannot apply
Morell’s fault-based testing method to eliminate the alternative. Instead, let us test the program using the

10



property sin? x+ cos? x = 1. The metamorphic relation in the implementation domain can be written as
Rp: (P(x, true))+ (p(x, false))? = 1. 1)

Consider a symbolic input x = Swith isSn = true. By symbolic execution of the alternate program contain-
ing statement 4', the output is

Trig(S true) = F % (1— $2/6+S'/120—...).
Hence, we have
(Trig(S true))?> = F2x (1 - /64 S'/120—...)?
= (axS") %% (1-F/6+5S"/120—...)?
= (2% M) x (1—(1/3) xS+ (2/45) xSt —...)
= a2+ " — (1/3) x @+« (MY 4 (2/45) x a2 x (12 _

()

For the same symbolic input x = Swith isSin = false, we obtain a second symbolic output of the program,
thus:
Trig(S false) = 1 — /24 S'/24 — /720 + ...

As a result,

(Trig(S false))? =1 — S+ (1/3) * S* — (2/45) s L + ...

Based on equation (1), we should have
(Trig(S true))+ (Trig(S false))® = 1
and therefore
a2« P — (1/3) % a2« MY 4 (2/45) x @2« D | =L (1/3)xS' +(2/45) xS —...  (3)

As we know, n is a non-negative integral constant. If n= 0, then there will be a constant term a? on the
left-hand side of identity (3), while the minimum degree of the right-hand side will be 2. This is obviously a
contradiction. If n > 2, then all the terms on the left-hand side of the identity will have a degree > 4, while
there will be a term of degree 2 on the right-hand side. This again will be a contradiction. Thus, the only
possible value of nis 1. Since n= 1, if we equate the coefficients of like terms on both sides of the identity,
we obtain a®> =1, — (1/3)xa? = —1/3, (2/45) xa® = (2/45), ..., which can be solved to give a = +1.

In this way, F can only be x or —x. Of course, F = x is just the original statement 4 in program Trig.
Hence, we need only study F = —x. To discard this alternative, we need to employ another metamorphic
relation. For example, we note that sin X = — cos(1t/2+x). The metamorphic relation in the implementation
domain can be written as

Xo =T/24+x1 — p(Xa, true) + p(xz, false) = 0. 4)

We apply the technique introduced in Section 4.2 to eliminate the alternative F = —x using real input.
Let Pl = 3.1415926535898 and let the input be x=1.2. The original program with F = x in statement 4 will
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produce Trig(1.2, true) = 0.93203908596723, and Trig (Pl /2+ 1.2, false) = —0.93203908596723. Hence,
Trig(1.2, true) + Trig(Pl /24 1.2, false) = 0 and the metamorphic relation (4) is satisfied.

We continue to test the alternate program with statement 4 replaced by “term = —x;”. Let us
call it Trig’. For the same input x = 1.2, the results are Trig’(1.2, true) = —0.93203908596723 and
Trig'(PlI/2 + 1.2, false) = —0.93203908596723. Hence, Trig'(1.2, true) + Trig’(Pl/2 + 1.2, false) =
—1.86407817193446. Obviously, this alternate program does not satisfy the expected metamorphic rela-
tion (4). In this way, the alternative F = —x is eliminated.

In this section, we have illustrated our technique of using symbolic input (possibly combined with real
input) to eliminate prescribed faults. The example also demonstrated the power of combining different
metamorphic relations in testing. It shows that, by making use of more than one metamorphic relation,
different types of faults may be revealed. In other words, different metamorphic relations may have different
fault-detection capabilities for different types of faults.

We must concede, however, that our method may not be foolproof in terms of program correctness. This
issue will be further discussed in the next section.

5 Discussions

In the previous examples, the prescribed types of faults have been totally eliminated. This may not be
possible in some real life situations. Having said that, we shall illustrate via an example in this section how
our method may still be applied in such circumstances.

The program Trap as shown in Figure 6 is adapted from [11]. It calculates the approximate area under
the curve f(x) for the interval between x = a and x = b. Suppose statement 12 is replaced by an alternate
statement

12" area =area + (k; * yOld + kp * yNew) / 2.;
/* Should be “area = area + (yOIld + yNew) / 2.;” */

where ki and kp are any constants. Before testing, let us first identify a metamorphic relation. Suppose
G(x) = F(x) + C, where C is a positive constant. = From elementary calculus, we know that
Trap(G, A, B, N, Error) = Trap(F, A, B, N, Error) +C x |B— A| when N > 1. We execute the program
using the symbolic input (F, A, B, N, Error), where F is any function, A> B, and N = 1. The statements
(1,3,4,5,6,7,8,9, 10, 11, 12, 13, 9, 14, 15, 16, 17) will be traversed, generating the symbolic output

Trap(F, A, B, N, Error) = (k1 * F(A) + kox F(B)) /2% (A— B).
Running the program again using the symbolic input (G, A, B, N, Error), we obtain
Trap(G, A, B, N, Error) = (k1 * (F(A) +C) + ko (F(B)+C))/2% (A—B).
According to the metamorphic relation, therefore, we establish an equation
(ky* (F(A)4+C)+kox (F(B)+C))/2* (A—B) = (ks xF(A) + kox F(B)) /2% (A—B) +C x (A— B).

After simplification, we obtain (k; + kz) xC = 2C, thus giving (ki + k) = 2. If k; and ky are possible
integers, then both of them can only take the value of “1”, which is just the original value. Otherwise, we
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/* Program Trap implements the trapezoidal rule to find the approximate area under the curve f(x) between
x = aand x = b. The computation uses n intervals of size |b — a| / n each. The variable “error” will be set
to “true” whenn < 1. */

float Trap (float (*f)(float), float a, float b, int n, bool &error) {
float area;
float h; /* interval */
float x;
float yOld; /* value of f(x — h) */
float yNew; /* value of f(x) */

1 if(n<l)
2: error = true;
else {
3 error = false;
4. area = 0;
5: if (@!=b){
6: h=(b-—-a)/n;
7 X=a;
8: yOld = (*)(x);
9: while (& > b && x> b) || (a < b && x < b)) {
10: X=x+h;
11: yNew = (*f)(x);
12: area = area + (yOld + yNew) / 2.;
13: yOld = yNew;
}
14: area = area * h;
15: if (@>hb)
16: area = —area,
}
}
17: return area,;

}

Figure 6: Program Trap

can still eliminate all pairs of k; and k» such that k; + ko # 2. This example shows that, even in situations
where our method cannot exactly identify the fault, our technique is still useful because it greatly narrows
down the range of possible faults.

The examples cited so far in this paper are numerical programs. It should be noted that our approach
can also be applied to non-numerical ones. Consider, for instance, a program ShortestPath that implements
the shortest path problem. The program accepts a graph G and two nodes A and B, and then outputs all the
shortest paths from Ato B. Apart from simple graphs, it is expensive to verify whether the outputs are correct.
In this case, metamorphic testing can be applied as follows: Randomly select an element P from the output
of ShortestPath(G, A, B). P is one of the shortest paths from Ato B. Randomly select a node C in this path
P. Then, run the program to compute ShortestPath(G, A, C) and ShortestPath(G, C, B). A metamorphic
relation is, “there exist an element of ShortestPath(G, A, C) and an element of ShortestPath(G, C, B) that
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can be combined to form the path P.” If this metamorphic relation is not satisfied, the program must contain
a fault. Another metamorphic relation is that a different permutation of the input graph G should produce the
same output. Fault-based testing techniques can be applied to such non-numerical metamorphic relations.
Furthermore, the concepts of attributive equivalence and observational equivalence have been introduced
in [7] for the testing of object-oriented programs. These concepts of equivalence can also be used as non-
numerical metamorphic relations in fault-based testing.

6 Conclusion

In this paper, we have looked into the oracle problem in fault-based testing. We have found that, by
integrating metamorphic testing with fault-based testing, alternate programs can be eliminated even if there
is no testing oracle. We have presented techniques of using real and symbolic inputs.

When compared with other fault-based testing approaches that rely on testing oracles, our approach
requires additional efforts in identifying metamorphic relations and running the program more than once.
Obviously, whenever a testing oracle is available, it should be used to check the output. Nevertheless, there
are many situations where a testing oracle cannot be found. Our method does provide an innovative solution
in such circumstances.
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